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1. Introduction

Planar solid oxide fuel cells (SOFCs) are high-density power

sources which promise relatively small environmental impact. Yet
their widespread use is hindered by high costs and poor long-term
thermomechanical reliability. Part of this reliability issue extends
from thermal mismatch between the fuel cell layers and strict
mechanical constraints from the SOFC configuration. For example,
SOFCs are constructed of repeating layers of porous composites and
solid ceramics across which the electrochemical reactions will take
place. The composites are constructed of interpenetrating metals
and ceramics, called cermets, that provide structural stability, effi-
cient flow paths for fuel and air, and conduction pathways for ion
transfer. Each of these functions is influenced by the respective
arrangement and amount of metal and ceramic. Therefore there
is a need to understand how the cermet’s microstructure influ-
ences the thermomechanical properties of interpenetrating metal
ceramic composites.

This work numerically creates multiple realizations (computer
generated digital models of the material) of these composites to
serve as a platform for numerical analyses. The realizations can
then be used to determine material properties and their links to
the microstructure.
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s cermets used in solid oxide fuel cells can be considered as composite
ases, namely nickel (Ni), ytrria-stabilized zirconia (YSZ), and voids. Based

atures, such as the volume fractions, average particle sizes and their cor-
a three-dimensional stochastic reconstruction method is used to recreate

digitally reconstructed microstructure is then transferred into finite ele-
erial’s corresponding effective elastic modulus and effective coefficient of
emperatures. Predictions from such a numerical methodology agree well

© 2008 Elsevier B.V. All rights reserved.

The anode material, nickel-zirconia (Ni–YSZ), is a classic exam-
ple of a three-phase porous material with a random heterogenous
microstructure. Made by tape casting NiO-YSZ slurry, the final
microstructure is highly influenced by starting particle sizes, con-
stituent compositions, and the multi-step manufacturing process.
The final microstructure is also influenced by the oxidation of

NiO during the sintering process and fuel cell operation. Although
Ni–YSZ’s primary use is as a vehicle for ion transfer, the material
must also meet several other requirements. It must provide struc-
tural support for the other layers in the cell; it must allow sufficient
flow paths for fuels, and finally it must be able to handle tempera-
ture cycles from room temperature up to several hundred degrees
Celsius. These requirements placed on the anode require a wide
range of different material behaviors, and the enhancement of any
of these can negatively impact another property.

In this paper Ni–YSZ is numerically generated as a three-phase
composite made of overlapping spheres of nickel and YSZ with a
porous matrix. The digital reconstruction method recreated a three-
dimensional pixilated image, or realization, of the material. Since
the reconstruction is 3D, the term voxel will be used in place of
pixel. By generating multiple realizations, the statistical variation
of key material properties, such as modulus and the coefficient of
thermal expansion (CTE), can be determined.

Reconstruction and analysis of heterogenous structures takes
place down several avenues. Fiber and particulate composites can
be reconstructed through tessellation procedures and then ana-
lyzed using self-consistent methods. Pyrz studied fiber composites
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using Dirichelet tessellations for simulated hard core models and
microscopy images, respectively [1]. Further research by Bochenek
and Pyrz studied unidirectional fiber reinforced composites and
particulate composites with Voronoi tessellations [2]. Stress inter-
actions around the particles were calculated using superposition
and the effective medium approach.

Ghosh and co-workers have directly incorporated representa-
tive volume elements (RVEs) generated from Voronoi cell (VC)
tessellations into a multi-scale finite element method (FEM) [3–6].
The microstructural model is termed VC-FEM, and it models par-
ticulates in a matrix using Voronoi tessellations, where each
tessellation is treated as an element with a particle at its center [3].
The same method was used for a multi-scale damage analysis in
porous materials [5]. Additionally, three-dimensional models were
created through stereological methods for particle reinforced metal
matrix composites [4]. Next the concept of statistically equivalent
representative volume elements (SERVEs) was used with VC-FEM
to study fiber and particulate composites that varied randomly
within the microstructure [7,8]. Methods developed by Gokhale
and co-workers used extremely detailed images of the particulates
in heterogenous microstructures to recreate the material through
a controlled re-distribution methodology [9–12]. Another work
examined the most efficient RVE size for use in macro–micro analy-
sis for fiber composites [13]. Other methods perform finite element
analyses on the actual microstructures read in via open source soft-
ware OOF; then the FE model can be used for different studies, such
as Cannillo’s and Carter’s stochastic damage analysis on a polycrys-
talline microstructure [14].

A modification of the simulated annealing method is used here
for its flexibility and efficiency in creating multiple realizations
for numerical analysis. Rintoul and Torquato used the simulated
annealing method to reconstruct a distribution of spheres using
the radial distribution function [15]. Next the simulated anneal-
ing method was used to recreate digitized media by Yeong and
Torquato [16]. Yeong and Torquato minimized processing time by
calculating the 2-point correlation function and the lineal chord
function in orthogonal directions and then updating the functions
only along rows and columns with one to one pixel exchanges. Man-
wart and Hilfer noted that the time saving device of calculating
correlation functions in only orthogonal directions will only intro-
duce anisotropy effects for microstructures displaying significant
short-range order [17]. The impact of short-range order and the
behavior of the simulated annealing procedure is further analyzed
by Cule and Torquato [18]. Microstructural information from a 2D

slice can also be used to construct a three-dimensional image as
shown in Part II of Yeong’s and Torquato’s work on reconstruct-
ing random media [19]. Rozman and Utz used several techniques
to improve the efficiency of the Monte Carlo reconstruction; these
include using the Great Deluge Algorithm plus an additional crite-
rion for “uphill” moves, limiting pixel changes to the interface, and
calculating perturbations of the probability functions [20].

The material properties for random media can be determined
through analytical, numerical, or experimental means. However,
each method has limitations. For random co-continuous media
analytical approaches are limited by microstructural information,
and this is especially true for porous media. Unit cell models
will be limited to very simple composites. Variational methods to
determine bounds, such as Hashin–Sthrikman, will diverge away
from the upper bound due to porosity. Experimental methods,
while vital, are also severely limited by expense and efficiency.
While software such as OOF can input one image of a material,
it becomes significantly more difficult to study the variation of
relevant material properties. Additionally, two-dimensional recon-
struction techniques such as tessellations can accurately capture
the behavior of a material, but cannot be easily adapted to the
Sources 181 (2008) 85–92

behavior of a three-dimensional random interpenetrating compos-
ite. To that end numerical reconstruction methods in connection
with finite element analysis can become a fast and flexible way to
determine realistic material properties with specific microstruc-
tures.

The simulated annealing method will be used to create voxel
reconstructions for numerical analysis. The effective modulus and
coefficient of thermal expansion will be found using multiple FE
analyses. These analyses will also investigate size effects of the
voxel reconstruction and the statistical variation of the results.

The following work will be arranged as follows. First, Sec-
tion 2 will introduce the methodology behind random media and
probability functions. Section 2.3 will specifically cover the recon-
struction method used, and Section 2.4 will introduce the FE model.
Section 3 will go over the results of the reconstruction, model con-
vergence, and the effective properties. The last two sections will
discuss these results in detail.

2. Methodology

2.1. Random media

For any media of volume Vi the microstructure can be fully char-
acterized by an indicator function

I(i)(x̃) =
{

1, if x̃ ∈ Vi

0, otherwise
, (2.1)

where i is the phase number, and x̃ is the vector location within
the volume [21]. The microstructure is assumed to be static and
therefore is not a function of time.

The indicator function describes every possible point with a
material, such that for any number, k, of phases the following equal-
ity holds,

k∑
i=1

I(i)(x̃) = 1. (2.2)

With the indicator function random media can be described by
determining the probability of a desired event or occurrence. For
example, an event of interest could be when multiple points lie
within the same phase. Such an event is an example of the n-point
probability function as illustrated in (2.3).
S(i)
n (x̃1, x̃2, . . . , x̃n) = P(I(i)(x̃1) = 1, I(i)(x̃2) = 1, . . . , I(i)(x̃n) = 1),

(2.3)

where P indicates the probability that a given location lies within
phase i. As the order n increases more microstructural details are
captured.

If the probability distributions of a material are invariant with
respect to location, the material is statistically homogenous and the
material is called ergodic. Additionally, if the random media does
not depend on the orientation of the vector positions, but only on
the magnitude of the distance between the points, it can be con-
sidered isotropic. In this case, the n-point functions now become
functions of the distance between the points such that r = |x̃j − x̃i|.

Thus for homogenous media the 1-point function will reduce to
the volume fraction (ϕi) of the material,

S(i)
1 = P(I(i)(x̃j)) = ϕi, (2.4)

and the 2-point functions become functions of distance r,

S(i)
2 (r) = S(i)

2 (x̃1, x̃2) = P(I(i)(x̃1) = 1, I(i)(x̃2) = 1). (2.5)
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6. Repeat until an accepted criterion is reached.

The efficiency of the process was increased by using voxel selec-
tion at the interface, by sampling in orthogonal directions, by using
the great deluge algorithm, and by using perturbations to calculate
the correlation functions. Boundaries are periodic.

Part of the flexibility of the DIB reconstruction is the flexibility
inherent in the use of energy as an acceptance criterion [16]. Any
desired correlation function can be used and these individual func-
tions can be weighted as desired. The energy function minimizes
the least square difference between a given set of desired proba-
bility functions and the functions existing at the current time step
of the reconstruction. Use of the least squares difference allows
flexibility in the reconstruction by allowing different probability
functions to be used at different weights.

2.4. FE model

The commercial software ABAQUS was used to perform the finite
J. Johnson, J. Qu / Journal of

Bounds exist for the 2-point function in homogenous media as
the radius reduces to zero or extends to infinity. These are

lim
r→0

S(i)
2 (r) = ϕi (2.6)

and

lim
r→∞

S(i)
2 (r) = (ϕi)

2. (2.7)

In Eq. (2.6) the 2-point functions reduce to the 1-point function
as r decreases and the two points converge to each other. In Eq. (2.7),
as the distances between the points increase they are no longer
spatially correlated and the 2-point approach becomes equivalent
to calculating the 1-point function at two separate points.

The behavior of the 2-point probability function as r approaches
zero is the first hint of the relationship between the probability
functions for multiple phases. Torquato and Stell showed that any n-
point probability function can be written as a function of the other
phases [22]. In other words, for a two-phase material the descrip-
tion of one phase will guarantee its complement to the second
phase. However, as the number of phases increases the relationship
must also be quantified between the phases, i.e. for three phases
there are actually multiple phases, namely phase 1, phase 2, phase
3, and the combinations of any two phases.

2.2. Microstructure

For this work the nickel and zirconia phases are described as
overlapping spheres as defined by Weissberg [21,23]. The 2-point
probability function does not exhibit any short-range order and is
defined by one characteristic length, the particle diameter (d). At
this point the function has reached its long-range order shown in
(2.7). While the function controls particle size it does not corre-
late the particles together, which allows interpenetration to occur,
and the most significant factor on clustering will be the volume
fraction. The analytical expression for overlapping spheres uses the
Heaviside function (�) as shown in (2.8).

S(i)
2 = 1 − 2(1 − ϕi) + (1 − ϕi)

(4g(r)/�d2),

where g(r) = d2

2

(
� − �(d − r)(arccos(r/d) − (r/d)

√
1 − r/d)

)
(2.8)
A third function is now required to create each realization. For
the three phases, the porous phase was the matrix of the composite;
however, since no analytical function exists for this value it was
approximated from one run of the material. The estimated 2-point
function for the pore phases will satisfy the bounds in (2.6) and
(2.7), but can exhibit short-range order.

2.3. Reconstruction

The realizations were generated using the digitized simulated
method introduced by Lee and Torquato with modifications from
Rozman and Utz [3,20]. The algorithms were implemented in the
C++ language and the GNU GCC compiler [24]. The reconstruction
procedure modifies the indicator function in Eq. (2.2) until the sam-
ple matches the desired probability functions. Then the indicator
function is used to create a voxel representation of the material for
further numerical use. Each voxel represents a different phase. The
multiple step process is described below:

1. Randomly seed sample with volume fractions of each materials.
2. Calculate desired probability functions in the current realization.
Fig. 1. 2-Point probability functions for reconstructed Ni–YSZ where nickel and YSZ
are overlapping spheres with a 5 �m diameter.

3. Exchange random voxels. The exchanging of voxels was con-
strained such that the volume fraction of all three phases was
maintained.

4. Update probability functions of volume and calculate energy.
5. Accept or reject change.
element analysis. For each digital image reconstructed, the voxels
were transferred to eight node brick elements and input into a FE

Fig. 2. 2-Point probability functions for the porous phase and the Ni–YSZ phase.
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Table 1
Constituent material properties used in FE analysis at 25 ◦C

Material Modulus (GPa) Poisson’s ratio Referance

Nickel 207 .31 [27]
YSZ 216 .315 [28]

model. Perfect bonding was assumed between the elements, and
each element was assigned the material properties corresponding
to the digital reconstruction. The Young’s modulus and coefficient
of thermal expansion of the volume were calculated in each coor-
dinate direction. The Young’s modulus was calculated at room
temperature using a standard structural analysis, while the CTE was
calculated for a temperature range between 20◦ and 1000◦.

The constituent material properties were temperature depen-
dant and were taken from the literature referenced in Table 1.
Experimental studies of the electrolyte material, non-porous
8 mol% ytrria (YSZ) material, were used as the YSZ properties in the
Ni–YSZ composite. The behavior of nickel around the Curie point
is complicated by the sudden jump in thermal expansion from the
ferromagnetic transition; therefore a temperature dependent equa-
tion of CTE was used from the work of Faisst [25]. This expression
was used to provide the CTE from 0 to 1000 ◦C. The CTE values for
nickel and YSZ are included in Fig. 9.

3. Results

3.1. Realization reconstruction

Ni–YSZ is usually made from a precursor of NiO-YSZ, and a
commonly used composition in fuel cells is 75% NiO/25 mol% YSZ
[26]. When the anode material is fully reduced to Ni–YSZ, stud-

ies have found the volume porosity to be 40% and the nickel and
YSZ ratios can be calculated to be 25% and 35%, respectively [26].
For both nickel and YSZ, the sphere diameter was set to 5 �m
and the initial total length of the sample was 50 �m. One realiza-
tion was generated with nickel and YSZ modeled as overlapping
spheres. The pore probability function from this realization was
smoothed for long-range order and then used for all further real-
izations. Fig. 1 shows the 2-point probability function for all three
phases for a realization generated from all three probability func-
tions. The pore function shows short-range order that vanishes
before 8 �m. Fig. 2 compares the 2-point probability function of
porosity to the combined nickel and zirconia phases. It can be seen
that the length and magnitude of the short-range order are com-
parable. The 2-point pore function plotted in Fig. 1 is used for all
future realizations and now each phase is governed by a probability
function.

An additional probability function was calculated from the
finished realization. The lineal chord function measures the prob-
ability that a chord connecting two random points in a phase i will
lie in the same phase i. The lineal chord functions for each phase
are plotted in Fig. 3. Examination of the plot shows that no signifi-

Table 2
Discretization of modulus at 25 ◦C
Sources 181 (2008) 85–92

Fig. 3. Lineal chord functions for each phase in the realization.

cant chord lengths exist past 15 �m, approximately three times the
particle diameters of nickel and YSZ.

3.2. Model convergence

After converting the realization to the FE model, convergence
was tested by two different methods: discretization error and
representative volume element size. Mesh density was tested by
subdividing each voxel into four subsections and rerunning the
analysis, and no significant difference was found to occur. Exam-
ination of discretization error determines that the voxel size is
small enough to accurately capture material behavior, while the
RVE size ensures that a large enough sample of the material is

analyzed to capture the material behavior. Separate tests were
performed for both the modulus and the CTE, since RVE size
and discretization error could vary depending on the analysis
type.

3.2.1. Discretization
Table 2 presents the calculated modulus for five different real-

izations in three directions providing a sample size of 15. The length
is maintained at 50 �m while the total number of voxels used to
measure the sample is increased. The size of the model is mea-
sured in the number of divisions along each side of the cube. The
physical dimensions of the particle diameters and the porosity’s
characteristic length are also constant for each size. The mean (�)
is listed and the standard deviation (S) is also recorded. The same
procedure is repeated in Table 3 for the CTE. The models selected
as converged are shaded in light grey.

3.2.2. RVE size
Testing of the RVE size means that the dimensions of the sample

size will change while the physical size of each voxel stays constant.
Table 4 shows the modulus results, and the RVE size is varied from
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Table 3
Discretization of CTE at 1000 ◦C
Table 4
RVE Size of modulus at 25 ◦C

Table 5
RVE Size of CTE at 1000 ◦C

the result of 50 divisions from Table 2. Table 5 repeats the procedure
for CTE.

3.2.3. Final realizations
Box plots of the mean and standard deviation of the modulus

illustrate the differences between the two different kinds of con-
vergence. In Fig. 4a the mean of the modulus decreases significantly
as the voxel length is decreased, until both the mean and standard
deviation do not vary significantly. However, in Fig. 4b the mean
varies little after the first sample, while the standard deviation
continues to vary.

The measurements of CTE showed slightly different behavior by
being far less dependent on voxel size, but slightly more dependent
on RVE size. Yet, since thermal expansion is primarily a constraint
issue, far fewer elements are needed for accurate calculation of CTE

coefficients.

The final models used for further analysis are shown in Fig. 5a
and b. A quarter section of the model is removed to show the
microstructure within the 3D reconstruction.

3.3. Computational expense

The ability to select the minimum model needed for analysis is
significant due to the computational expense. Since the reconstruc-
tions are three-dimensional a slight increase will eventually lead to
significant increases in the time to reconstruct Ni–YSZ. This is born
out in Fig. 6 which plots the clock time per second versus the model
divisions. However, it should be noted that computational expense
is strictly a matter of total elements and complexity of the reference
functions used.

3.4. Material properties

3.4.1. Modulus
Based on the discussion above, models with 50 divisions were

selected for computing the elastic modulus. Fifty different realiza-

Fig. 4. Box plots of modulus for (a) discretization error and (b) RVE size at 25 ◦C.
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the analytical functions of overlapping spheres. Additionally, for
all realizations listed in Tables 2–5 the final reconstructions had
probability functions identical to the reference functions.

The importance of using the pore probability function is clear in
Fig. 2. The function matches the bounds in Eqs. (2.6) and (2.7), which
means the pore phase behaves in a random manner. The short-
range order in the pore phase is also a good fit with the short-range
order in the combined nickel and YSZ phases. This is reasonable;
since the initial realization was created using only the two overlap-
ping sphere functions, the remaining pore phase would have been
forced in a controlled distribution around the spheres.

The lineal chord plot in Fig. 3 provides limited information on
the clustering behavior of the microstructure. The majority of chord
lengths are limited to the diameter size for all three phases. The YSZ
phases show slightly more clustering than the nickel phase, which is
reasonable since YSZ has a higher volume fraction. The fact that the
pore phase, which has the highest volume fraction in the material,
shows less clustering would be a cause of the short-range order in
its 2-point probability function.
Fig. 5eps. Final realizations of Ni–YSZ for the (a) CTE model with 30 divisions and
(b) Young’s modulus model with 50 divisions.

tions were constructed and analyzed in each coordinate direction
to obtain the effective elastic modulus. The results are best fit to a
normal distribution, even though there is a right leaning skew as
shown in Fig. 7.

3.4.2. Coefficient of thermal expansion
Since the CTE had very small standard deviations, the FE analysis

focused on the CTE variation due to change in temperature. Fig. 8a
shows the nickel, Ni–YSZ, and YSZ CTEs for 0–1000 ◦C. The CTE is
linear except at the Curie point of nickel at 349 ◦C. The Curie point
behavior is zoomed in on in Fig. 8b.
Sources 181 (2008) 85–92

4. Discussion

4.1. Realization reconstruction

The simulated annealing method efficiently recreated many
different realizations of the given Ni–YSZ microstructure. The 2-
point probability function also proved sufficient in recreating the
microstructure so long as each of the three phases was described.
In Fig. 1 the plots of the nickel and YSZ match almost exactly
Fig. 6. Clock time per second versus the model divisions during reconstruction.

Fig. 7. Statistical variation of Young’s modulus for 50 total realizations measured
in three directions with a model size of 50 divisions at 25 ◦C, a particle diameter of
5 �m, and a volume length of 50 �m.
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4.2. Model convergence

The two different convergence tests had different results
depending on the material property measured. While the Young’s
modulus was dependent on both voxel size and the total volume
size, the CTE was insensitive to changes in either. By comparing the
discretization and RVE results plotted in Fig. 4, different conclusions
can be drawn about the FE determination of the Young’s modulus.
First, as voxel size decreases the modulus will be more accurately

captured, as the voxels more accurately capture the microstruc-
tures’ behavior. Secondly, once a sufficient RVE is found, a continued
increase of volume will affect the standard deviation of the modu-
lus while the mean stays constant. This makes sense; as the volume
grows it behaves in an increasingly homogenous manner. Ther-
mal expansion, as a constraint problem, was very insensitive to
discretization error and was much more dependant on RVE size.

4.3. Material properties

Compared to the Hashin–Shtrikman upper bounds for the
Young’s modulus, these results are very reasonable as shown in
Fig. 9 [27]. Work by Radovic et al. has predicted the modulus
results for 40% porosity to be approximately 60 GPa, which is 22%
lower than our calculated value [26]. However, since the real-
ization microstructure is generated using an exact description of
overlapping spheres, it is safe to assume the microstructures are
significantly different.

The slight right leaning skew of the modulus results (Fig. 7) sug-
gests that the modulus tends upward. The exact reason for this is
unknown, but could be because a lower limit of the modulus is

Fig. 8. CTE of Ni–YSZ with respect to temperature for (a) 0–1000 ◦C and (b) around
the Curie point.
Sources 181 (2008) 85–92 91

Fig. 9. Hashin–Shtrikman upper bound of modulus with respect to vol.% Ni–YSZ.

more a function of volume fractions than microstructural arrange-
ment. Our lower bound of 60 GPa does compare with experimental
results.

The FE results for CTE match closely experimental results, which
range from 10.5e-6 to 14e-6 for 100–950 ◦C [28]. It is interesting that
CTE measure had such small standard deviations for every model
configuration analyzed. From Tables 3 and 5 it appears that CTE
is primarily a function of volume fraction. Also the CTE requires a
sufficient RVE size to be accurately measured. The plots of CTE for
Ni–YSZ (Fig. 8) show that the CTE is almost equally divided between
the constituent materials, and that it also has linear behavior except
at the Curie point.

5. Conclusions

The two point correlation functions for overlapping spheres
were used to digitally recreate the material nickel zirconia used
for SOFC anodes. Next finite element analyses were used to
determine the Young’s modulus and CTE of Ni–YSZ. The FE mod-
els accurately captured the microstructural variation within the
composite. Study of multiple realizations showed that different
microstructures with the same statistical features behave in a
relatively uniform manner after convergence is reached. To that
end, the reconstruction method can be used to create models
for FE analysis to study the stochastic nature of metal–ceramic
composites.
Although only elastic modulus and CTE are considered in
this paper, the reconstruction method developed here can also
be used to study other mechanical and thermal behaviors of
multi-phase composites, such as fracture, fatigue, creep, and
effective thermal conductivity, as well as flow properties such
as permeability. Results of these studies will be published
elsewhere.
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